3D Bioplotter Research Papers

Displaying all papers by I. Izquierdo-Barba (4 results)

3D scaffold with effective multidrug sequential release against bacteria biofilm

Acta Biomaterialia 2016 Volume 49, Pages 113–126

Bone infection is a feared complication following surgery or trauma that remains as an extremely difficult disease to deal with. So far, the outcome of therapy could be improved with the design of 3D implants, which combine the merits of osseous regeneration and local multidrug therapy so as to avoid bacterial growth, drug resistance and the feared side effects. Herein, hierarchical 3D multidrug scaffolds based on nanocomposite bioceramic and polyvinyl alcohol (PVA) prepared by rapid prototyping with an external coating of gelatin-glutaraldehyde (Gel-Glu) have been fabricated. These 3D scaffolds contain three antimicrobial agents (rifampin, levofloxacin and vancomycin), which have been…

In vitro colonization of stratified bioactive scaffolds by pre-osteoblast cells

Acta Biomaterialia 2016 Volume 44, Issue 15, Pages 73–84

Mesoporous bioactive glass-polycaprolactone (MBG-PCL) scaffolds have been prepared by robocasting, a layer by layer rapid prototyping method, by stacking of individual strati. Each stratus was independently analyzed during the cell culture tests with MC3T3-E1 preosteblast-like cells. The presence of MBG stimulates the colonization of the scaffolds by increasing the cell proliferation and differentiation. MBG-PCL composites not only enhanced pre-osteoblast functions but also allowed cell movement along its surface, reaching the upper stratus faster than in pure PCL scaffolds. The cells behavior on each individual stratus revealed that the scaffolds colonization depends on the chemical stimuli supplied by the MBG dissolution…

Design and preparation of biocompatible zwitterionic hydroxyapatite

Journal of Materials Chemistry B 2013 Volume 11, Issue 1, Pages 1595-1606

This study reports the design and preparation of zwitterionic nanocrystalline hydroxyapatite (HA) capable of inhibiting bacterial adhesion while allowing osteoblast cell colonization. The surface functionalization of HA powders was carried out by post-synthesis grafting of 3-aminopropyltriethoxysilane (APTES) and carboxyethylsilanetriol sodium salt (CES) as amine and carboxylate precursors, respectively. The successful functionalization of HA surfaces was assessed by elemental chemical analysis, FTIR, 29Si, 31P and 13C solid state CP/MAS NMR and ζ-potential measurements, and the zwitterionic nature of the synthesized HA was proved through the presence of –NH3+/–COO− pairs on the material surfaces. With the aim of evaluating the feasibility of…

Preparation of 3-D scaffolds in the SiO2–P2O5 system with tailored hierarchical meso-macroporosity

Acta Biomaterialia 2011 Volume 7, Issue 3, Pages 1265-1273

Herein we report for the first time the synthesis of three-dimensional scaffolds in the binary system SiO2–P2O5 exhibiting different scales of porosity: (i) highly ordered mesopores with diameters of ca. 4 nm; (ii) macropores with diameters in the 30–80 μm range with interconnections of ca. 2–4 and 8–9 μm; and (iii) ultra-large macropores of ca. 400 μm. The hierarchical porosity of the resulting scaffolds makes them suitable for bone tissue engineering applications. The chemical nature and mesoporosity of these matrices would allow these scaffolds to act as local controlled delivery systems of biologically active molecules, such as certain drugs to…